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We have made a theoretical study of the hydrodynamics and heat transfer of non-Newtonian fluids near a
cooled isothermal surface by laminar free convection with regard for the change in the fluid viscosity with
temperature. A power rheological model has been used. The solutions to the systems of differential equations
for the boundary layer have been obtained numerically. It has been shown that the strongest influence in the
considered kinds of convection is produced by the relative viscosity. Moreover, of great importance is the
nonlinearity index of the medium. With increasing rheological parameter the influence of variable viscosity
decreases. Criteria equations for calculating the local and mean Nusselt numbers and friction coefficients
have been obtained.

The dependence of the wall shear stress on the shear deformation rate for high-viscosity fluids is nonlinear,
as a rule, i.e., they are non-Newtonian media. Temperature strongly influences viscosity, while the other physical prop-
erties of dropping liquids depend weakly on temperature and practically do not affect the heat transfer [1]. In [2], the
heat transfer of non-Newtonian fluids by free convection with regard for the variable viscosity near surfaces heated
with respect to the fluid was investigated. In [3, 4], the hydrodynamics and free convection heat transfer of pseudo-
plastic and dilatant fluids in the case of constant viscosity were investigated. In [5], the integral method was used to
obtain solutions as well as experimental data for an isothermal horizontal cylinder exchanging heat with a fluid obey-
ing the power law. In [6], the heat transfer to non-Newtonian fluids from a heated isothermal vertical plate immersed
in 0.5% and 1% aqueous solutions of carboxypolymethylene ("carbopol"), for which 0.7 < n < 1, were studied experi-
mentally. The free laminar convection of Newtonian fluids with regard for the variable viscosity near both heated and
cooled surfaces was investigated in [7]. There is an acute shortage of works on the heat transfer near cooled rheologi-
cally complex media, while such investigations are demanded by practice.

In the present work, we have investigated the local heat transfer and friction by free convection of non-New-
tonian fluids near an isothermal surface cooled with respect to the medium flowing past it. We used the power
rheological model [2]
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where µfl and µ are the viscosities of the fluids outside the boundary layer (constant) and at an arbitrary point of the
boundary layer, respectively.

With the use of this model the system of differential equations of free convection heat transfer in the Boussi-
nesq approximation (the equations hold for both the vertical plate and the horizontal cylinder) with regard for the vari-
able viscosity takes on the following form [5]:
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The boundary conditions are

y = 0 :   u = v = 0   and   t = tw ;   y → ∞:   u = 0   and   t = tfl . (4)

In view of the Grashof, Prandtl, and Rayleigh criteria taken according to Acagi [2] Eqs. (2)–(4) were trans-
formed by means of the self-simulated variables for the vertical plate and the horizontal cylinder. In both cases, the
transformations yield the same system of differential equation

Gr
∗

2−n
n

 Ra
∗

2n+2

n(3n+1)
 








2n + 1
n




 f (η) f ′′ (η) − 





n + 1
n




 (f ′′ (η))2



 + θ (η) + 









µ
µfl

 f ′′ (η)


n



 ′
 = 0 , (5)

θ ′′ (η) + 




2n+1
n




 f (η) θ ′ (η) = 0 , (6)

η = 0 :   f (η) = 0 ,   f ′ (η) = 0 ,   θ (η) = 1 ;   η → ∞:   f ′′ (η) = 0 ,   θ (η) = 0 . (7)

At Pr∗ → ∞ Eq. (5) is simplified:
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Here it is necessary to express the variable-viscosity-containing term in terms of constant parameters and the similarity
variable. Christiansen [8] transformed expression (1) as follows:
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Metzner [9] with the aid of Eq. (9) explains the heat transfer of non-Newtonian fluids. Calculations on the basis of
this equation from experimental data of a conventional heat exchanger for the majority of non-Newtonian fluids at nor-
mal temperatures yield a good coincidence. From comparison of (1) and (9) we have
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Fluid viscosities near the surface µw and at a distance from it µfl are constant quantities. With the use of Eq.
(10) the ratio of the fluid viscosity µ at an arbitrary point of the boundary layer at temperature T to the fluid viscosity
at a distance from the surface µfl at temperature Tfl can be expressed in terms of the ratio of viscosities µfl and µw,
respectively, at temperatures Tfl and Tw:
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The solutions to the systems of differential equations have been obtained by the fourth-order Runge–Kutta
method in the range of change in the parameters: µ

__
 = µfl

 ⁄ µw = 0.005–1; n = 0.1–2.5; T\ = −0.5; Pr∗ → ∞. To find
the velocity and temperature gradients on the wall, the shooting method was used.
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Analysis of the obtained solutions at µ
__

 = 1 has revealed the influence of rheology on the hydrodynamics and
heat transfer. The velocity and temperature profiles for this case at various values of the structural viscosity coefficient
are given in Fig. 1. In general, the influence of n on the dynamic parameters of the boundary layer is much stronger
than on the thermal ones.

With decreasing rheological parameter n the thickness of the dynamic boundary layer decreases. The thickness
of the thermal boundary layer increases with decreasing n, but the scale of these changes is small compared to the
changes in the dynamic boundary layer thickness, which agrees with the results of the analysis of the differential equa-
tion (6).

With decreasing n the velocity profiles become less filled (more sloping), but the shape of the curves remains
practically unaltered, and the maximum velocity thereby decreases. The influence of the index of non-Newtonian be-
havior of the medium on the temperature profiles is not as strong as on the velocity profiles. With increasing n the
velocity and temperature gradients decrease throughout the layer thickness. The results obtained agree with the results
of the solutions [2–4, 7] for constant physical properties of the fluid.

Figure 2a shows the influence of the variable fluid viscosity on the velocity and temperature profiles of dila-
tant media (n = 2.5). Cooling of the fluid near the wall leads to a deformation of the velocity and temperature profiles
towards a decrease in their gradients on the wall, and its heating causes an increase in the gradients on the wall with

Fig. 1. Influence of the nonlinearity index of the medium on the velocity (f ′)
and temperature (θ) profiles in the case of constant physical properties of the
fluid: 1) n = 2.5; 2) 1.25; 3) 0.5; 4) 0.1; f ′, ascending, θ, descending profiles.

Fig. 2. Influence of variable viscosity on the velocity (f ′) and temperature (θ)
profiles of dilatant (a) — n = 2.5 and pseudoplastic (b) — n = 0.1 fluids: 1)
µ
__

 = 10; 2) 1; 3) 0.1; 4) 0.01; f ′, ascending, θ, descending profiles.
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the physical properties of the fluid remaining unaltered. Cooling leads to an increase in the thickness of the thermal
boundary layer, and heating causes its decrease. With decreasing µ

__
 the maximum velocity decreases. Changes in this

parameter have a stronger effect on the dynamic boundary layer than on the thermal one. Analysis of the results ob-
tained has shown that the relative viscosity produces a stronger effect on the thermal parameters than the nonlinearity
coefficient n does, and on the dynamic parameters — vice versa.

With increasing µ
__

 the thermal boundary layer thickness decreases, and the thickness of the dynamic boundary
layer is practically independent of the variable viscosity. This is explained by the fact that viscosity and temperature
vary within the limits of the thermal boundary layer. For high-viscosity fluids the latter is much thinner than the dy-
namic boundary layer, and since the longitudinal velocities of different fluid layers tend to equalize at a distance from
the wall, the difference in velocity profiles for various values of the variable viscosity manages to level off in the re-
maining part of the dynamic boundary layer.

With decreasing µ
__

 the temperature profiles become more sloping. The smaller this parameter, the higher the
temperature curve. The velocity profiles at µ

__
 < 1 gradually deform, an inflection point appears on them, the curves be-

come increasingly S-shaped, and the maximum longitudinal velocity thereby decreases. Such a velocity profile is also
observed in Newtonian fluids (n = 1) in the same range of change in the relative viscosity [7], which points to the
presence of a slow-moving layer near a cooled surface, but in dilatant fluids the "creeping" motion effect is much
stronger.

With decreasing µ
__

 the velocity and temperature gradients on the wall decrease. A more pronounced S-shaped
velocity profile decreases the stability of the laminar flow of dilatant fluids compared to Newtonian fluids, which may
lead to the separation of the boundary layer or precipitate the transition to a turbulent flow. For an individual dilatant
medium the same is observed when the velocity gradient tends to zero with decreasing parameter µ

__
.

At small values of the flow index n the influence of µ
__

 decreases (Fig. 2b), and the S-shaped deflection of the
velocity profile becomes unnoticeable. In other respects for pseudoplastics (n < 1) the foregoing holds for dilatant fluids
(n > 1).

Analysis of the results of the solutions has shown that the influence of the variable viscosity on the velocity
and temperature gradients on the wall is fairly reliably estimated by the parameter µ

__
. These gradients with respect to

the quantities for constant properties of the fluid are well approximated by the following relations (Fig. 3):
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 k
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 . (12)

Fig. 3. Relative temperature (a) and velocity (b) gradients on the wall versus
variable viscosity at various n (µfl

 ⁄ µw < 1, data of the authors; µfl
 ⁄ µw > 1,

Acagi’s data [2]): 1) n = 0.1; 2) 0.2; 3) 0.5; 4) 1; 5) 1.25; 6) 2.5.
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The indices m and k are functions of the flow index n and are generalized with an error of no more than % 1.2% by
the relations

m = 0.174 − 
0.019

n + 0.084
 , (13)

k = 1.016 − 
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n + 0.180
 ,   n (k − 1) = 0.016n − 
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 . (14)

Using relations (11)–(14) and taking into account the values of the parameters f ′′(0) and θ′(0), we have ob-
tained criteria equations for the local and average heat transfer and friction. In the case of the vertical plate (mean er-
rors are, respectively, %2, %0.8, %0.8, and %0.5%)
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Analogous expressions for the free convection of the non-Newtonian fluid near the horizontal cylinder (mean errors
are, respectively, %0.3, %0.9, %0.06, and %0.1%) are
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Fig. 4. Temperature gradient — θ′(0) (a) and velocity gradient of nth degree
[f ′′(0)]n (b) versus the flow index n (physical properties of the fluid are con-
stant). 1) Acrivos’s data [4]; 2) our data.

1101



Cfx = 


1.144
n + 0.516

 + 0.729


 Ra

∗
−1 ⁄ (3n+1)

 (s (ξ))n
 (g (ξ))2n

 µ
__

 n(k−1)
 , (21)

C
__

f = 


1.160
n + 0.467

 + 0.745


 Ra

∗
−1 ⁄ (3n+1)

 µ
__

 n(k−1)
 . (22)

Here the functions s(ξ) and g(ξ) take into account the cylinder curvature, and their values have been calculated and
tabulated.

Figure 4 shows the dependences of the transfer parameters −θ′(0) and [f ′′(0)]n on the exponent n according to
Acrivos’s data [4] as well as our data. It is seen that in the region of 0 < n < 1.5 there is a good agreement between our
results and Acrivos’s solutions, but at n > 1.5 a discrepancy is observed. The dependences of Cξ = Nu/Gr∗1 ⁄ (2n+2)

Pr∗n ⁄ (3n+1) on the angle ξ for the horizontal isothermal cylinder obtained theoretically as in [1] at n = 0.5, 1.0, and 1.5
are given in Fig. 5, where Nu = αR ⁄ λ.

In [5], good agreement between the self-similar solution, the solutions constructed by the integral method, and
the experimental data was noted. Figure 6 gives the curves of the local Nusselt number as a function of angle ξ for
the isothermal regime of a heated surface [5], and for comparison the same figure presents the results obtained in the
present paper for an analogous value of the rheological parameter n = 1.18, but at constant physical properties of the
fluid. It made sense to present these results due to the fact that the temperature head in the considered experiments is
too small for the viscosity of the substance used to change markedly. For comparison Fig. 6 also gives the Acagi so-
lutions [2] for n = 1.18 and µ

__
 = 1.5, where the decrease in the fluid viscosity near the surface upon heating is taken

into account. According to the experimental data of [5], the averaged Nusselt numbers turned out to be 5–10% smaller
than the theoretical values of the present study.

In the literature there is lack of experimental data and theoretical studies on free convection of non-Newtonian
fluids near a cooled surface with regard for the variable viscosity. In [7], such studies (theoretical and experimental)

Fig. 5. Change in the local heat transfer coefficient along the surface of the
horizontal isothermal cylinder: 1) n = 0.5; 2) 1; 3) 1.5 (our data); 4) n = 0.5;
5) 1.0; 6) 1.5 (Acrivos’s data [4]).

Fig. 6. Change in the local heat transfer coefficient along the surface of the
horizontal isothermal cylinder [5] (working fluid — aqueous solution of sac-
charose with a 38% content of maize starch): 1) our data for n = 1.18, µ

__
 = 1;

2) ∆t = 2.2oC; 3) ∆t = 8.9oC; 4) experimental data for Newtonian fluids; 5)
solution by the integral method for the case of a constant rate of heat flow on
the surface (n = 1.18); 6) solution for Newtonian fluids obtained by the inte-
gral method; 7) Acagi’s data [2] for n = 1.18, µ

__
 = 1.5.

1102



for Newtonian fluids were reported. For the above case, the following equations of local heat transfer and friction by
free convection near a vertical isothermal wall were obtained there:

Nux = 0.503 
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1

1 + Prx
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0.25

 Rax
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 .

These relations have been confirmed by many experimental and theoretical studies [10–12]. In the present work, the
generalized similarity criteria at n = 1 are converted to the values of Newtonian fluids, i.e., they take on the traditional
form. According to our data, for the considered case of free convection of a Newtonian fluid near a vertical cooled
isothermal wall (at n = 1) the local Nusselt number and the friction coefficient are calculated by the formulas

Nux = 0.507Rax
0.25

 µ
__

0.156
 ,   Cfx = 2.331Rax

−0.25
 µ
__

 −0.148
 .

Figure 7 presents the results of the solutions obtained by us for comparison to the experimental data and nu-
merical solutions obtained by different researchers for local heat transfer.

CONCLUSIONS

1. The influence of variable viscosity of a fluid on the relative heat transfer and friction depends only on µ
__

.
The degree of influence of this parameter on the heat transfer and friction is different and depends on the thermal
flow direction and the nonlinearity index of the fluid (rheological parameter n).

2. The influence of variable viscosity on the hydrodynamics is much stronger than on the heat transfer. The
same holds for the rheological parameter n.

3. Upon cooling of the fluid near the surface the laminar flow stability decreases compared to the isothermal
flow. With decreasing µ

__
 and decreasing degree of dilatancy this trend grows.

4. Criteria equations have been obtained for calculating local and mean Nusselt numbers and friction coeffi-
cients under laminar free convection near a cooled vertical plate (expressions (15)–(18)) and a cooled horizontal cylin-
der (expressions (19)–(22)). They can be recommended for engineering calculations of local and mean heat transfer
and friction coefficients.

5. Our solutions agree with the experimental and theoretical data obtained by other authors.

Fig. 7. Comparison of the results obtained by different researchers on local
heat transfer (n = 1) with regard for the influence of variable viscosity: 1)
[10]; 2) [11]; 3) oil [7]; 4) fuel oil [7]; 5) [12]; 6) our data for n = 1; 7) µ
= 1 [7].
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NOTATION

a, thermal diffusivity, m2/sec; c, isobaric specific heat capacity, J/(kg⋅K); Cf, friction coefficient; Ev, activation

energy of one mole, J/mole; f(η), dimensionless stream function; g, acceleration of gravity, m/sec2; g(ξ) = [((3n + 1)/n)×

×−n ⁄ (3n+1) sin1 ⁄ (2n+1) ξ]/

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0

ξ

sin1 ⁄ (2n+1) ξdξ
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, function that, along with the function s(ξ), takes into account the cylin-

der curvature and permits application of the equations for a vertical plate to a horizontal cylinder; Grx
∗ = ρ2 ⁄ (2−n)gβ(Tw − Tfl)

x(2+n) ⁄ (2−n)µfl
−2n ⁄ (2−n), generalized Grashof similarity number; K, consistency measure, (Pa⋅sec)n; k, constant parame-

ter; L, characteristics size of the body (length of the plate, radius of the cylinder), m; n, structural viscosity index;

Nu, Nusselt number; Prx
∗ B ρ1−nx2−2nµfl

nc2−nλn−2 , generalized Prandtl similarity number; R, cylinder radius, m; r,

universal gas constant, J/(K⋅mole); Ra∗ = Gr∗ Pr∗n ⁄ (2−n)
, generalized Rayleigh similarity number; s(ξ) = ((3n + 1)/

n)
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, function having a meaning analogous to g(ξ); T, absolute temperature, K;

T = (Tw − Tfl)/Tfl, temperature parameter; t, temperature, oC; u, fluid velocity in external flow, m/sec (for the verti-

cal plate u = 
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f ′(η), for the horizontal cylinder u = 2−2(2n+1) ⁄ (3n+1) a
R

Ra∗2 ⁄ (3n+1)
s(ξ)

g(ξ)f ′(η)); v, fluid velocity perpendicular to the surface being flown; x, longitudinal coordinate of the plate (for the
cylinder x is an arc coordinate reckoned from the front point), m; y, transverse coordinate in the case of the plate,

m; β, isobaric expansion coefficient, 1/K; γ
.
, shear deformation rate; 1/sec; η, similarity variable (η(x, y)  =
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L
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 for the vertical plate, η = 2−(2n+1) ⁄ (3n+1) y

R
Ra∗1 ⁄ (3n+1)

 g(ξ) for the horizontal cylin-

der); θ = (T − Tfl)/ (Tw − Tfl), dimensionless temperature; λ, heat conductivity coefficient, W/(m⋅K); µ, dynamic vis-

cosity, Pa⋅sec; µ
__

, relative viscosity; ξ = x/R, angular coordinate with respect to the front point of the cylinder, rad;

ρ, fluid density, kg/m3; τx, local shear stress along the wall, Pa. Subscripts: fl, fluid; w, wall; f, near the surface

being flown; x, local value; v, for one mole of substance; 0, at constant physical properties of fluid; *, modified
similarity criteria.
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